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Roadmap

1. Introduction
> Why learning dynamical systems?

> An operatorial perspective: Transfer operators.



Roadmap

2. Statistical learning

> Problem formalization and low-rank estimators. (NeurIPS 22 +23)

> Representation learning. (ICLR '24)



Dynamical Systems

& Machine Learning

Meteorology Neuroscience Atomistic Dynamics

> Dynamical Systems are mathematical models of temporally
evolving phenomena.

> Data-driven dynamical systems are becoming key in science &
engineering.

> Advances in ML lead to better algorithms.
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Learning dynamical systems

Transter operators as alternative to ditterential equations

> Classical approach: model dynamics with an ODE, PDE, or SDE
and learn the unknown equation parameters from data.

> If the system Is too complex, or too big, can we build efficient
models of dynamics purely from the observed data?

> This I1s not only possible, but also remarkably elegant via
transfer operator theory.

Andre] AndreeviC Markov Bernard O. Koopman  Andrej Nikolaevi¢ Kolmogorov



Dynamical Systems

Stochastic setting

~ Evolution of a state variable over time: (x,),»o € .

> We focus on discrete, time homogenous, Markov processes:
I]j’[XtJrl | X, ...,Xt] = IP[XIH \Xt], independent of

> A prototypical example: X, ; = F(X,) + noise,.



Langevin Equation

A model Tor atoms’ dynamics

Overdamped Langevin equation
driven by a potential U: R¢— R

dX,= -V UX)dt +p~ 2w,

Folding of CLNO25 (Chignolin)
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The Transfer Operator

What does “learning a dynamical system”™ means, anyway?

> The transfer operator T describes the evolution of any scalar
function of the state in a suitable set .

(TH®) =E[ X, ) | X, =x], feF

» If F itis large enough, the transfer operator offers a comprehensive
characterization of a stochastic process as a whole.

> Provides a global linearization of the dynamics.

> Its spectral decomposition yield dynamic modes, for interpretability
and control.



Dynamical Mode Decomposition
To interpret dynamical systems > 73 §@Uﬂ‘ )
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Dynamical modes: 2D Von Karman Vortex Street.
(T. Krake et al. 2021)
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Dynamical modes: 2D Von Karman Vortex Street.
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> Mode Decomposition disentangles the expected value of an
observable into temporal and spatial components.

[ S| Xy = x1=(THx) =2 4




Learning the Transfer
Operator

Statistical analysis of transter operator regression



Learning the transfer operator
Kostic et al. — NeurIPS 22

(THX) = E[fX,, DX =x] feF

Assumptions:

> Ergodicity: there is a unique distribution zs.t. X.~7 = X, | ~ 7.

> T is well-defined on & LZ(SZ") that is T[Lz(fl")] C Lz(fl")

> Challenge: the operator and its domain are unknown!



Subspace approach

> Idea: approximate T _at least on a subset #Z C L2,
» We choose # to be a Reproducing Kernel Hilbert Space.
> Linearly parametrized functions {(w, ¢p(x)) for some w € #'.

> ¢ X — A is called feature map. # can be finite or infinite dim.

Ambient space L]%(SZ")

Image of the restriction

Pgr

Observables
RKHS



Risk functional

> By the linearity of T_ (conditional expectation is linear).

> And the linearity of observables’ parametrization (w, ¢(x)).

— [¢(Xt+1) ‘Xt — .X] ~ G*(x)




Risk functional

> By the linearity of T_ (conditional expectation is linear).

> And the linearity of observables’ parametrization (w, ¢(x)).

The left side is the regression function of this risk functional

R(G) = _(Xt’Xt+l)Np||¢(Xt+1) — G*Qb(Xt)Hz

The risk functional can be interpreted as a linearization error.



Empirical risk minimization

And low-rank models

> Given asample (x;,y;)._,~plearn G: X > A
minimizing the regularised empirical risk:

R(G) = ) ll¢0) = G*p(o)II* + 7IIGlls
=1

Ridge Regression Principal Component Regression

Full-rank solution. Low-rank: Minimizes the risk on a feature Low-rank: Adds an hard rank constraint,
subspace spanned by the principal components. leading to a generalized eigenvalue problem.



Statistical learning analysis

Justitying every tollowing result
Ambient space L,%(Sl")

Restriction T, |,

Estimator é

Image of the restriction
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Observables
RKHS

Estimation error

ITsy = Gllzmrz < TP Ty Il +|I1P5 T, —Gll |+ 1G=G]
H
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Representation error Estimator bias



Representation Learning

Kostic, Novelli, Grazzi, Lounicl, and Pontil — ICLR 24

ITr = Gllzorz < U=Ps)T +| 1P% T, =Gl |+ IG=G|

o, ! d
H H

Representation error Estimator bias

Our approach looks for an empirical estimator of the representation error via the
following upper and lower bounds (consequence of the norm change from # to LJ%)

|I=Pg) T, Poll*25:.(Cap) < NI —ll’y/)'l',q%ll2 < NA=P3)T Pl * Anax(Cop)

min
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If Cgy = I the upper and lower bound match, and the Eckart-Young-Mirsky theorem
on P, T P4, assures that the representation error is minimized.
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Application: metastable states of Ch|gnot|n
Kostic, Novelli, Grazzi, Lounicl, and Pontil — ICLR 24

The leading eigenfunctions of T capture the
long-term behavior of atomistic dynamics.

A better representation of the data allows a
more accurate physical understanding.

DPNets-relaxed

Trained DPNets on a Graph Neural Network

appropriate for the problmem vs. Fixing Z to
be the Gaussian RKHS.

Model | P  Transition Enthalpy AH

DPNets | 12.84 17.59ns -1.97 kcal/mol
Nys-PCR | 7.02 5.27 ns -1.76 kcal/mol
Nys-RRR | 2.22 0.89 ns -1.44 kcal/mol

Reference - 40 ns -6.1 kcal/mol

Free Energy Surface




Conclusions

Additional works

» Sharp spectral rates for Koopman operator learning. (Spotlight @ NeurIPS '23)
> Estimating Koopman operators with sketching to provably learn large-scale dynamical systems. (NeurIPS’23)

> A randomized algorithm to solve reduced rank operator regression. (Submitted)
Ongoing work

> Operatorial formulation of Reinforcement Learning.
Y \, \4

> Neural Conditional Probability models.

And also:

» Riccardo Grazzi
Giacomo Turri
Daniel Ordonez-Apraez
Prune Inzerilli
Carlo Ciliberto
Andreas Maurer
Luigi Bonati
Michele Parrinello
Lorenzo Rosasco
Giacomo Meanti
Antoine Chatalic

Vladimir Kostic Karim Lounici Massi Pontil
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Thank you!



