

Learning Dynamical Systems

A transfer operator approach

Pietro Novelli

Jun 6, 2024

Roadmap

1. Introduction

- Why *learning* dynamical systems?
- An operatorial perspective: Transfer operators.

2. Statistical learning

- Problem formalization and low-rank estimators. (NeurIPS '22 + '23)
- Representation learning. (ICLR '24)

Roadmap

1. Introduction

- Why learning dynamical systems?
- An operatorial perspective: Transfer operators.

2. Statistical learning

- Problem formalization and low-rank estimators. (NeurIPS '22 + '23)
- Representation learning. (ICLR '24)

Dynamical Systems

& Machine Learning

- Dynamical Systems are mathematical models of temporally evolving phenomena.
- Data-driven dynamical systems are becoming key in science & engineering.
- Advances in ML lead to better algorithms.

Dynamical Systems

& Machine Learning

- Dynamical Systems are mathematical models of temporally evolving phenomena.
- Data-driven dynamical systems are becoming key in science & engineering.
- Advances in ML lead to better algorithms.

Learning dynamical systems

Transfer operators as alternative to differential equations

- Classical approach: model dynamics with an ODE, PDE, or SDE and learn the unknown equation parameters from data.
- If the system is too complex, or too big, can we build efficient models of dynamics purely from the observed data?
- This is not only possible, but also remarkably elegant via transfer operator theory.

Andrej Andreevič Markov

Bernard O. Koopman

Andrej Nikolaevič Kolmogorov

Dynamical Systems

Stochastic setting

- Evolution of a **state** variable over time: $(x_t)_{t \ge 0} \subseteq \mathscr{X}$.
- We focus on discrete, time homogenous, Markov processes:

$$\mathbb{P}\left[X_{t+1} | X_1, \dots, X_t\right] = \mathbb{P}\left[X_{t+1} | X_t\right], \text{ independent of } t$$

• A prototypical example: $X_{t+1} = F(X_t) + \text{noise}_t$.

A model for atoms' dynamics

Overdamped Langevin equation driven by a potential $U: \mathbb{R}^d \to \mathbb{R}$

 $dX_t = -\nabla U(X_t)dt + \beta^{-1/2}dW_t$

Folding of CLN025 (Chignolin)

noise,

Euler-Maruyama discretization

 $X_{t+1} = X_t - \nabla U(X_t) + \beta^{-1/2} (W_{t+1} - W_t)$

 $F(X_{\star})$

A model for atoms' dynamics

Overdamped Langevin equation driven by a potential $U: \mathbb{R}^d \to \mathbb{R}$

 $dX_t = -\nabla U(X_t)dt + \beta^{-1/2}dW_t$

Folding of CLN025 (Chignolin)

noise,

Euler-Maruyama discretization

 $X_{t+1} = X_t - \nabla U(X_t) + \beta^{-1/2} (W_{t+1} - W_t)$

 $F(X_{\star})$

A model for atoms' dynamics

Overdamped Langevin equation driven by a potential $U: \mathbb{R}^d \to \mathbb{R}$

 $dX_t = -\nabla U(X_t)dt + \beta^{-1/2}dW_t$

Folding of CLN025 (Chignolin)

noise,

Euler-Maruyama discretization

$$X_{t+1} = X_t - \nabla U(X_t) + \beta^{-1/2} (W_{t+1} - W_t)$$

 $F'(X_{\star})$

A model for atoms' dynamics

Overdamped Langevin equation driven by a potential $U: \mathbb{R}^d \to \mathbb{R}$

 $dX_t = -\nabla U(X_t)dt + \beta^{-1/2}dW_t$

Folding of CLN025 (Chignolin)

noise,

Euler-Maruyama discretization

$$X_{t+1} = X_t - \nabla U(X_t) + \beta^{-1/2} (W_{t+1} - W_t)$$

 $F'(X_{\star})$

The Transfer Operator

What does "learning a dynamical system" means, anyway?

The transfer operator T describes the evolution of any scalar function of the state in a suitable set *F*.

$$(\mathsf{T}f)(x) = \mathbb{E}[f(X_{t+1}) \mid X_t = x], \quad f \in \mathcal{F}$$

- If \mathscr{F} it is large enough, the transfer operator offers a comprehensive characterization of a stochastic process $as \ a \ whole$.
- Provides a global linearization of the dynamics.
- Its spectral decomposition yield dynamic modes, for interpretability and control.

Dynamical Mode Decomposition

To interpret dynamical systems

- Spectral decomposition: $T = \sum_{i=1}^{\infty} \lambda_i \psi_i \otimes \psi_i$ (self-adjoint and compact)
- Scalars λ_i and functions ψ_i are eigenvalues and eigenfunctions $T\psi_i = \lambda_i \psi_i$

Dynamical modes: 2D Von Karman Vortex Street. (T. Krake et al. 2021)

Mode Decomposition disentangles the expected value of an observable into temporal and spatial components.

 $\mathbb{E}[f(X_t) | X_0 = x] = (\mathsf{T}^t f)(x) = \sum_i \lambda_i^t \langle \psi_i, f \rangle \psi_i(x)$

Dynamical Mode Decomposition

To interpret dynamical systems

- Spectral decomposition: $T = \sum_{i=1}^{\infty} \lambda_i \psi_i \otimes \psi_i$ (self-adjoint and compact)
- Scalars λ_i and functions ψ_i are eigenvalues and eigenfunctions $T\psi_i = \lambda_i \psi_i$

Dynamical modes: 2D Von Karman Vortex Street. (T. Krake et al. 2021)

 Mode Decomposition disentangles the expected value of an observable into temporal and spatial components.

 $\mathbb{E}[f(X_t) | X_0 = x] = (\mathsf{T}^t f)(x) = \sum_i \lambda_i^t \langle \psi_i, f \rangle \psi_i(x)$

Learning the Transfer Operator

Statistical analysis of transfer operator regression

Learning the transfer operator

Kostic et al. — NeurIPS '22

$$(\mathsf{T}f)(x) = \mathbb{E}[f(X_{t+1}) | X_t = x] \quad f \in \mathcal{F}$$

Assumptions:

- **Ergodicity**: there is a unique distribution π s.t. $X_t \sim \pi \Rightarrow X_{t+1} \sim \pi$.
- T is well-defined on $\mathscr{F} = L^2_{\pi}(\mathscr{X})$, that is $\mathsf{T}[L^2_{\pi}(\mathscr{X})] \subseteq L^2_{\pi}(\mathscr{X})$.
- **Challenge:** the operator and its domain are unknown!

Subspace approach

- Idea: approximate T_{π} at least on a subset $\mathscr{H} \subset L_{\pi}^2$.
- We choose \mathscr{H} to be a **Reproducing Kernel Hilbert Space**.
- Linearly parametrized functions $\langle w, \phi(x) \rangle$ for some $w \in \mathcal{H}$.
- $\phi \colon \mathscr{X} \to \mathscr{H}$ is called **feature map**. \mathscr{H} can be finite or infinite dim.

Risk functional

- By the linearity of T_{π} (conditional expectation is linear).
- And the linearity of **observables' parametrization** $\langle w, \phi(x) \rangle$.

$$\mathbb{E}\left[\phi(X_{t+1}) \,|\, X_t = x\right] \approx \mathsf{G}^*\phi(x)$$

Risk functional

Т

- By the linearity of T_{π} (conditional expectation is linear).
- And the linearity of **observables' parametrization** $\langle w, \phi(x) \rangle$.

$$\mathbb{E}\left[\phi(X_{t+1}) \mid X_t = x\right] \approx G^* \phi(x)$$

he left side is the **regression function** of this **risk functional**
$$\mathbb{R}(G) = \mathbb{E}_{(X_t, X_{t+1}) \sim \rho} \|\phi(X_{t+1}) - G^* \phi(X_t)\|^2$$

The risk functional can be interpreted as a **linearization error**.

Empirical risk minimization

And low-rank models

• Given a sample $(x_i, y_i)_{i=1}^n \sim \rho$ learn $G: \mathcal{H} \to \mathcal{H}$ minimizing the **regularised empirical risk**:

$$\hat{R}_{\gamma}(G) = \sum_{i=1}^{n} \|\phi(y_i) - G^*\phi(x_i)\|^2 + \gamma \|G\|_{\text{HS}}^2$$

Ridge Regression

Full-rank solution.

Principal Component Regression

Low-rank: Minimizes the risk on a feature subspace spanned by the principal components.

Reduced Rank Regression

Low-rank: Adds an *hard* rank constraint, leading to a generalized eigenvalue problem.

Statistical learning analysis

Justifying every following result

Ambient space $L^2_{\pi}(\mathcal{X})$

Estimation error

$$\|\mathsf{T}_{\pi|_{\mathscr{H}}} - \hat{\mathsf{G}}\|_{\mathscr{H} \to L^{2}_{\pi}} \leq$$

$$\|(I - P_{\mathscr{H}})\mathsf{T}_{\pi|_{\mathscr{H}}}\|$$

Representation error

$$+ \left(\|P_{\mathscr{H}}\mathsf{T}_{\pi}\|_{\mathscr{H}} - \mathsf{G} \| \right)$$

Estimator bias

Estimator variance

Representation Learning

Kostic, Novelli, Grazzi, Lounici, and Pontil – ICLR '24

$$\|\mathsf{T}_{\pi}\|_{\mathscr{H}} - \hat{\mathsf{G}}\|_{\mathscr{H} \to L^{2}_{\pi}} \leq \left\| (I - P_{\mathscr{H}})\mathsf{T}_{\pi}\|_{\mathscr{H}} + \left\| P_{\mathscr{H}}\mathsf{T}_{\pi}\|_{\mathscr{H}} - \mathsf{G} \right\| + \left\| \mathsf{G} - \hat{\mathsf{G}} \right\|$$
Representation error
Estimator bias

Our approach looks for an empirical estimator of the **representation error** via the following upper and lower bounds (consequence of the norm change from \mathscr{H} to L^2_{π})

$$\|(I-P_{\mathscr{H}})\mathsf{T}_{\pi}P_{\mathscr{H}}\|^{2}\lambda_{\min}^{+}(C_{\mathscr{H}}) \leq \|(I-P_{\mathscr{H}})\mathsf{T}_{\pi}\|_{\mathscr{H}}\|^{2} \leq \|(I-P_{\mathscr{H}})\mathsf{T}_{\pi}P_{\mathscr{H}}\|^{2}\lambda_{\max}(C_{\mathscr{H}})$$

Representation Learning

Kostic, Novelli, Grazzi, Lounici, and Pontil – ICLR '24

$$\|\mathsf{T}_{\pi}\|_{\mathscr{H}} - \hat{\mathsf{G}}\|_{\mathscr{H} \to L^{2}_{\pi}} \leq \left\| (I - P_{\mathscr{H}})\mathsf{T}_{\pi}\|_{\mathscr{H}} + \left\| P_{\mathscr{H}}\mathsf{T}_{\pi}\|_{\mathscr{H}} - \mathsf{G} \right\| + \left\| \mathsf{G} - \hat{\mathsf{G}} \right\|$$
Representation error
Estimator bias
Estimator variance

Our approach looks for an empirical estimator of the representation error via the following upper and lower bounds (consequence of the norm change from \mathscr{H} to L^2_{π})

$$\|(I-P_{\mathscr{H}})\mathsf{T}_{\pi}P_{\mathscr{H}}\|^{2}\lambda_{\min}^{+}(C_{\mathscr{H}}) \leq \|(I-P_{\mathscr{H}})\mathsf{T}_{\pi}\|_{\mathscr{H}}\|^{2} \leq \|(I-P_{\mathscr{H}})\mathsf{T}_{\pi}P_{\mathscr{H}}\|^{2}\lambda_{\max}(C_{\mathscr{H}})$$

If $C_{\mathscr{H}} = I$ the upper and lower bound match, and the Eckart-Young-Mirsky theorem on $P_{\mathscr{H}}\mathsf{T}_{\pi}P_{\mathscr{H}}$ assures that the representation error is minimized.

$$\frac{\|C_{XY}^{\theta}\|_{\mathrm{HS}}^2}{\|C_X^{\theta}\| \|C_Y^{\theta}\|} - \gamma \|I - C_X^{\theta}\|_{\mathrm{HS}}^2 - \gamma \|I - C_Y^{\theta}\|_{\mathrm{HS}}^2$$

Application: metastable states of Chignolin

Kostic, Novelli, Grazzi, Lounici, and Pontil – ICLR '24

The leading eigenfunctions of **T** capture the long-term behavior of atomistic dynamics.

A better representation of the data allows a more accurate physical understanding.

Trained DPNets on a Graph Neural Network appropriate for the problem vs. Fixing \mathscr{H} to be the Gaussian RKHS.

Model	$\mid \mathcal{P}$	Transition	Enthalpy ΔH
DPNets Nys-PCR Nys-RRR	12.84 7.02 2.22	17.59 ns 5.27 ns 0.89 ns	-1.97 kcal/mol -1.76 kcal/mol -1.44 kcal/mol
Reference	-	40 ns	-6.1 kcal/mol

Conclusions

Additional works

- Sharp spectral rates for Koopman operator learning. (Spotlight @ NeurIPS '23)
- Estimating Koopman operators with sketching to provably learn large-scale dynamical systems. (NeurIPS'23)
- A randomized algorithm to solve reduced rank operator regression. (Submitted)

Ongoing work

- Operatorial formulation of Reinforcement Learning.
- Neural Conditional Probability models.

Vladimir Kostic

Karim Lounici

Massi Pontil

And also:

- Riccardo Grazzi
- Giacomo Turri
- Daniel Ordoñez-Apraez
- Prune Inzerilli
- Carlo Ciliberto
- Andreas Maurer
- Luigi Bonati
- Michele Parrinello
- Lorenzo Rosasco
- Giacomo Meanti
- Antoine Chatalic

Thank you!