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Transfer operators as alternative to differential equations
Learning dynamical systems

‣ Classical approach: model dynamics with an ODE, PDE, or SDE    
and learn the unknown equation parameters from data. 

‣ If the system is too complex, or too big, can we build efficient 
models of dynamics purely from the observed data? 

‣ This is not only possible, but also remarkably elegant via  
transfer operator theory.

Bernard O. Koopman Andrej Nikolaevič KolmogorovAndrej Andreevič Markov



Dynamical Systems
Stochastic setting

‣ A prototypical example: .                                 Xt+1 = F(Xt) + noiset

‣ Evolution of a state variable over time: .(xt)t≥0 ⊆ 𝒳

‣ We focus on discrete, time homogenous, Markov processes:

    independent of ℙ[Xt+1 |X1, …, Xt] = ℙ[Xt+1 |Xt], t



    

Langevin Equation
A model for atoms’ dynamics

Folding of CLN025 (Chignolin)

dXt = −∇U(Xt)dt +β−1/2dWt

Overdamped Langevin equation 
driven by a potential U : ℝd →ℝ

Xt+1 =Xt −∇U(Xt)

F(Xt)

+ β−1/2(Wt+1−Wt)

noiset

Euler—Maruyama discretization
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What does “learning a dynamical system” means, anyway?
The Transfer Operator

‣ The transfer operator  describes the evolution of any scalar 
function of the state in a suitable set .

𝖳
ℱ

    (𝖳f )(x) = 𝔼[ f(Xt+1) | Xt = x ], f ∈ ℱ

‣ If  it is large enough, the transfer operator offers a comprehensive 
characterization of a stochastic process as a whole. 

‣ Provides a global linearization of the dynamics. 

‣ Its spectral decomposition yield dynamic modes, for interpretability 
and control.

ℱ



    

‣ Spectral decomposition:                 
(self-adjoint and compact)  

‣ Scalars  and functions  are 
eigenvalues and eigenfunctions

λi ψi

𝖳ψi = λiψi

To interpret dynamical systems
Dynamical Mode Decomposition

Dynamical modes: 2D Von Karman Vortex Street. 
(T. Krake et al. 2021)

𝖳 =
∞

∑
i=1

λiψi ⊗ ψi

𝔼[ f(Xt) |X0 = x ]=(𝖳tf )(x) =∑i λt
i ⟨ψi, f⟩ ψi(x)

‣ Mode Decomposition disentangles the expected value of an 
observable into temporal and spatial components.
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Learning the Transfer 
Operator
Statistical analysis of transfer operator regression



    

‣  Ergodicity: there is a unique distribution  s.t. . 

‣   is well-defined on , that is . 

‣ Challenge: the operator and its domain are unknown!

π Xt ∼π ⇒ Xt+1 ∼π

𝖳 ℱ = L2
π(𝒳) 𝖳[L2

π(𝒳)] ⊆ L2
π(𝒳)

Learning the transfer operator
Kostic et al. — NeurIPS ’22

(𝖳f )(x) = 𝔼[ f(Xt+1) |Xt =x] f ∈ ℱ

Assumptions:



Subspace approach
‣ Idea: approximate  at least on a subset . 

‣ We choose  to be a Reproducing Kernel Hilbert Space. 

‣ Linearly parametrized functions  for some . 

‣  is called feature map.  can be finite or infinite dim.

𝖳π ℋ ⊂ L2
π

ℋ

⟨w, ϕ(x)⟩ w ∈ ℋ

ϕ : 𝒳 → ℋ ℋ

Observables
RKHS

Image of the restriction

Ambient space  L2
π(𝒳)

ℋ ℋ

𝖦

𝖳π |ℋ

Pℋ



‣ By the linearity of  (conditional expectation is linear). 

‣ And the linearity of observables’ parametrization .

𝖳π

⟨w, ϕ(x)⟩

Risk functional

    𝔼[ϕ(Xt+1) |Xt = x] ≈ 𝖦*ϕ(x)



‣ By the linearity of  (conditional expectation is linear). 

‣ And the linearity of observables’ parametrization .

𝖳π

⟨w, ϕ(x)⟩

Risk functional

    𝔼[ϕ(Xt+1) |Xt = x] ≈ 𝖦*ϕ(x)    𝔼[ϕ(Xt+1) |Xt = x] ≈ 𝖦*ϕ(x)

    R(𝖦) = 𝔼(Xt,Xt+1)∼ρ∥ϕ(Xt+1) − 𝖦*ϕ(Xt)∥2

The left side is the regression function of this risk functional

The risk functional can be interpreted as a linearization error.



    

‣ Given a sample  learn                
minimizing the regularised empirical risk:

(xi, yi)n
i=1 ∼ρ 𝖦 :ℋ→ℋ

And low-rank models
Empirical risk minimization

R̂γ(𝖦) =
n

∑
i=1

∥ϕ(yi) − 𝖦*ϕ(xi)∥2 + γ∥𝖦∥2
HS

Ridge Regression Principal Component Regression Reduced Rank Regression
Low-rank: Minimizes the risk on a feature 
subspace spanned by the principal components.

Low-rank: Adds an hard rank constraint, 
leading to a generalized eigenvalue problem.

Full-rank solution. 



Justifying every following result
Statistical learning analysis

Observables
RKHS

Image of the restriction

Ambient space  L2
π(𝒳)

ℋ ℋ
Pℋ

≤ ∥(I−Pℋ)𝖳π|ℋ
∥ + ∥Pℋ𝖳π|ℋ

−𝖦∥ + ∥𝖦−𝖦̂∥

Representation error Estimator bias Estimator variance

Estimation error

∥𝖳π|ℋ
− 𝖦̂∥ℋ→L2

π

Estimator 𝖦̂

Restriction 𝖳π |ℋ



Kostic, Novelli, Grazzi, Lounici, and Pontil — ICLR ‘24

Representation Learning

≤ ∥(I−Pℋ)𝖳π|ℋ
∥ + ∥Pℋ𝖳π|ℋ

−𝖦∥ + ∥𝖦−𝖦̂∥

Representation error Estimator bias Estimator variance

∥𝖳π|ℋ
− 𝖦̂∥ℋ→L2

π

∥(I−Pℋ)𝖳πPℋ∥2λ+
min(Cℋ) ≤ ∥(I−Pℋ)𝖳π|ℋ

∥2 ≤ ∥(I−Pℋ)𝖳πPℋ∥2λmax(Cℋ)

Our approach looks for an empirical estimator of the representation error via the 
following upper and lower bounds (consequence of the norm change from  to )ℋ L2

π
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Representation Learning

∥Cθ
XY∥2

HS

∥Cθ
X∥ ∥Cθ

Y∥
− γ∥I−Cθ

X∥2
HS − γ∥I−Cθ

Y∥2
HS

≤ ∥(I−Pℋ)𝖳π|ℋ
∥ + ∥Pℋ𝖳π|ℋ

−𝖦∥ + ∥𝖦−𝖦̂∥

Representation error Estimator bias Estimator variance

∥𝖳π|ℋ
− 𝖦̂∥ℋ→L2

π

∥(I−Pℋ)𝖳πPℋ∥2λ+
min(Cℋ) ≤ ∥(I−Pℋ)𝖳π|ℋ

∥2 ≤ ∥(I−Pℋ)𝖳πPℋ∥2λmax(Cℋ)

Our approach looks for an empirical estimator of the representation error via the 
following upper and lower bounds (consequence of the norm change from  to )ℋ L2

π

If  the upper and lower bound match, and the Eckart-Young-Mirsky theorem 
on  assures that the representation error is minimized.

Cℋ = I
Pℋ𝖳πPℋ
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Application: metastable states of Chignolin

The leading eigenfunctions of  capture the 
long-term behavior of atomistic dynamics. 

A better representation of the data allows a 
more accurate physical understanding. 

Trained DPNets on a Graph Neural Network 
appropriate for the problmem vs. Fixing  to 
be the Gaussian RKHS.

𝖳

ℋ



‣ Operatorial formulation of Reinforcement Learning. 

‣ Neural Conditional Probability models.

Ongoing work

Conclusions

Vladimir Kostic Karim Lounici Massi Pontil

And also: 
‣ Riccardo Grazzi 
‣ Giacomo Turri 
‣ Daniel Ordoñez-Apraez 
‣ Prune Inzerilli 
‣ Carlo Ciliberto 
‣ Andreas Maurer 
‣ Luigi Bonati 
‣ Michele Parrinello 
‣ Lorenzo Rosasco 
‣ Giacomo Meanti 
‣ Antoine Chatalic

Additional works
‣ Sharp spectral rates for Koopman operator learning. (Spotlight @ NeurIPS ’23) 

‣ Estimating Koopman operators with sketching to provably learn large-scale dynamical systems. (NeurIPS’23) 

‣ A randomized algorithm to solve reduced rank operator regression. (Submitted)
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