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Impact on the Real World

• Robotics and Autonomous Systems,
• Finance: Trading and Portfolio Opt.,
• Energy Management and Smart Grids,
• Healthcare and Personalized
Treatment,

• Games and Decision-Making,
• Autonomous Vehicles,
• RLHF (RL w/ human feedback),
• Reasoning for LLMs,
• …

2024 Turing Award awarded to Sutton and Barto for

laying the foundations of reinforcement learning.
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Problem Setting



Intuition

We have a sequential decision making problem:

At time t, the environment is in the state Xt. An agent executes an
action At. The environment changes its state to Xt+1.

Time t + 1

EnvironmentAgent
Action

State

Reward

Time t

State

Reward

A scalar reward rt+1 = r(Xt, At) tells us how good/bad this was.

Our goal is to find a policy to choose the “best” actions.
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Markov Decision Processes (MDPs)

We consider a Markov Decision Process (MDP) characterized by a:

• State space X
• Action space A
• A transition kernel τ : Ω = X ×A → P(X )

• A (non-negative) reward1 r : X ×A → R+

Details

We assume X and A Polish spaces and τ, r Borel measurable. P(X ) the space of

Borel probability measures on X .

1Making this technically a Markov Reward Process.
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Policy

We assume to have the freedom to choose what action to take.

This is embodied in the notion of a policy:

π : X → P(A)

so that π(·|x) denotes the probability that we will take a specific
action when the system is in state x ∈ X .

Goal. Find the “best” policy?
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Objective

Given a starting distribution ν ∈ P(X ) and a discount2 γ ∈ [0, 1),

Goal: maximize the (γ-discounted) Expected Return

J(π) = Eν,π,τ

[
+∞∑
t=0

γtr(Xt, At)

]

achieved by policy π in the MDP (X ,A, τ, r) starting from ν .

Notation:

X0 , At and Xt+1 have laws respectively ν , π(·|Xt) and τ(·|Xt, At) for any t ∈ N.

2this could be removed, but makes for much more manageable problems.
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A Taxonomy of RL Algorithms
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A Taxonomy of RL Algorithms
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Today’s plan

We will formalize the RL problem with an operatorial formalism
through which we will

• Derive a coincise expression of the objective function, and its
derivatives.

• Study the convergence rates of (policy) mirror descent.

• Describe an RL algorithm based on conditional mean
embeddings, if time permits.
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Operator-based Formulation



Operatorial Perspective

Transfer Operator.
T : Bb(X ) → Bb(Ω) such that for any f ∈ Bb(X ) and (x, a) ∈ Ω

(Tf)(x, a) =

∫
X
f(x′) τ(dx′|x, a) = E [f(X ′) | x, a] .

“Policy” Operator.
Pπ : Bb(Ω) → Bb(X ) such that for any g ∈ Bb(Ω) and x ∈ X

(Pπg)(x) =

∫
A
g(x, a) π(da|x) = E [g(X,A) | X = x] .

Notation:

Bb(X ) space of bounded Borel-measurable functions on X .
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Markov Operators

Both T and Pπ are Markov operators.

f ≥ 0 =⇒ Mf ≥ 0

M1 = 1

Every Markov operator is associated to a conditional probability
p(·|x) = M∗δx through its adjoint.

Markov operators are a convex subset of Bb(X ) and they all have
norm

∥∥M∥∥ = 1.

10



Why on earth?

• With operators we replace the non-linear evolution law
τ(x′|x, a) for the linear law f 7→ Tf .

• T describes expected values in the future, which are exactly
what appears in the RL objective function.

• A non-standard approach to RL.
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Operatorial Perspective (II)

By applying T and Pπ we have...

Single interaction between π and the MDP starting from (x, a):

E[r(X1, A1)|X0 = x,A0 = a] = (TPπr)(x, a)

After t ∈ N such steps...

E[r(Xt, At)|X0 = x,A0 = a] =
[
(TPπ)

tr
]
(x, a)

Summing all of them up (with γ-discount):

qπ(x, a) =

+∞∑
t=0

γtE[r(Xt, At)|x, a] =
+∞∑
t=0

(γTPπ)
tr = (Id− γTPπ)

−1r(x, a)

Why: T and Pπ are Markov operators, hence their operator norms ‖T‖ = ‖Pπ‖ = 1

and therefore the above Neumann series is convergent.
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Operatorial Perspective (III)

Proposition.3

J(π) = 〈Pπqπ, ν〉 =
〈
Pπ(Id− γTPπ)

−1r, ν
〉

Proof. Recall the definition of our objective

J(π) = Eν,π,τ

[
+∞∑
t=0

γtr(Xt, At)

]

= Eν,π

[
+∞∑
t=0

γtE[r(Xt, At)|X0, A0]

]
= Eν,π [qπ(X0, A0)]

= Eν

[
Eπ(·|X0)[qπ(X0, A0)|X0]

]
= Eν [(Pπqπ)(X0)]

= 〈Pπqπ , ν〉

3With the canonical pairing 〈f, ν〉 =
∫
f(x)ν(dx).
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Minimizing J

Why do we like the operator form for J(π)? Well, for starters,

max
π

〈
Pπ(Id− γTPπ)

−1r, ν
〉

is in a much more “standard“ form (from an optimization
perspective).

Actually... since for any θ ∈ [0, 1] and policies π1, π2,

Pθπ1+(1−θ)π2
= θPπ1 + (1− θ)Pπ2

The definition of policy operator is linear w.r.t. individual policies,
so...

...is the problem convex? (or rather, concave, since it’s a
maximization?)
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Minimizing J

Unfortunately, not4.

However, nothing prevents try and minimize it nevertheless!

In particular, since we can “easily” compute derivatives...

Lemma.5 For any Markov operators P,P′ let V = P′ − P. Then

lim
h→0

J(P+ hV )− J(P)

h
=

1

1− γ

〈
V q(P), (Id− γTP)−∗ν

〉

...we could use first-order methods to minimize J !

4Agarwal, Kakade, Lee and Mahajan. On the theory of policy gradient methods:
Optimality, approximation, and distribution shift. JMLR 2021.
5We have generalized the definitions of J and q to any Markov operator.
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Policy Mirror Descent



(Projected) Gradient Descent?

If we knew to project onto the space of all measurable policies6 Π...

...we could use projected gradient descent7 (PGD):

• Start from some P0 ∈ Π,
• Produce a minimizing sequence iteratively such that, ∀k ∈ N

Pk+1 = ProjΠ
(
Pk + η∇J(Pk)

)
with η > 0 a suitable step-size

Challenge: in practice, it’s not clear how to project onto Π.

6I will be sloppily confusing Pπ with π where it’s clear (to me?) from context.
7technically, ascent, but we can just minimize −J
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Mirror Descent

Mirror Descent (MD). Generalizes PGD using a Bregman divergence D
instead of a norm:

• For any k ∈ N the update step is

Pk+1 = argmin
P∈Π

−η 〈∇J(Pk),P〉+D(P,Pk)

MD enjoys similar properties to PGD. For example, if J were convex, it
would also guarantee convergence8!

(Potential) Advantage: carefully choosing D might yield more
amenable (e.g. closed-form) solutions for the update step above!

8Under some additional assumption on D and Π
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“Our” Bregman Divergence

So, let’s choose our Bregman divergence.

Generalizing (Xiao2022)9 from the tabular setting10, we take

D(Pπ,Pπk
) =

1

1− γ

∫
KL(π(·|x), πk(·|x)) ρπk

(dx)

where:

• ρπ = (Id− γTPπ)
−∗ν is the “occupancy measure” of π,

• KL is the Kullback-Leibler divergence

9Xiao. On the convergence rates of policy gradient methods. JMLR 2022.
10Tabular setting: X and A are sets with finite cardinality.
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(Policy) Mirror Descent

Proposition. The (Policy) Mirror Descent step can be performed
point-wise, namely the iterative sequence of operators Pk = Pπk

is
such that, for any k ∈ N and any x ∈ X

πk+1(·|x) = argmin
p∈P[A]

−η 〈qπk
(·, x), p〉+ KL(p, πk(·|x))

which has closed-form solution

πk+1(·|x) =
πk(·|x)eηqπk

(x,·)∫
A πk(a|x)e

ηqπk
(x,a) πk(da|x)
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(Policy) Mirror Descent on Finite A

Assumption: let A have finite cardinality.

Then, by applying the PMD update recursively we have

πk+1(·|x) = SoftMax

log π0(·|x) + η

k∑
j=0

qπj
(x, ·)


Where SoftMax(q) = eq∑

a∈A eq(a) .

Note.

While we could generalize the above to generic A, we would be left with an integral at

the denominator that we would (likely) be unable to estimate exactly. Studying how

such approximation error would propagate will be the subject of future work.
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Covergence of PMD

Theorem11. Let (πk)k∈N be a sequence generated by PMD with
sufficiently large η > 0. Then,

max
π∈Π

J(π)− J(πk) ≤ O(1/k) ∀k ∈ N

Even if J is not convex, PMD converges to the global maximum!

Note: While the objective function J is non-convex, global convergence rates can be
proved by gradient domination results. Further, Xiao proved linear convergence rates
in the tabular case, depending on

∥∥ d(Id−γTP)−∗ν
dν

∥∥
∞ .

11very informal!

21



Connection to other policy gradient algorithms.

Policy Mirror Descent:

πk+1(·|x) = argmin
p∈P[A]

−η 〈qπk
(·, x), p〉+ KL(p, πk(·|x))

Trust-region Policy Optimizaion (2015):

πk+1(·|x) = argmin
p∈P[A]

−
〈
qπk

(·, x), p

πk(·|x)

〉
subject to KL(πk(·|x), p) ≤ δ

22



The reality of policy-gradient methods in Deep-RL
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Towards a practical Algorithm



Taking Stock

Good news. We have an algorithm to find the best policy, but...

Bad news. For every k we need to know how to evaluate qπk
. But

qπk
= (Id− γTPπk

)−1r

requires knowledge of the transition operator T!

Challenges:

• In Reinforcement Learning (RL) we do not know τ (or T)!
• Even in Dynamic Programming or Optimal Control, where τ is
known, it might be too complicated for us to obtain T!

Idea: let’s approximate qπk
with some q̂πk

that is more amenable to
practical manipulations!
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Covergence of “Approximate” PMD

Theorem12. Let (πk)k∈N be a sequence generated by the
“approximate” PMD step

πk(·|x) = SoftMax

log π0(·|x) +
k∑

j=0

q̂πk
(x, ·)


where q̂πk

are such that ‖q̂π̂k
− qπ̂k

‖∞ ≤ εk for some εk > 0. Then,

max
π∈Π

J(π)− J(πk) ≤ O

(
1 +

∑k
j=0 εj

k

)
∀k ∈ N

If we can control the εj (e.g. such that ε = O(1/j)), then
“approximate” PMD converges to the global maximum!

12Again, very informal!
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Approximating the action-value function

The need for an approximation q̂πk
of the action-value function is

shared by most RL algorithms.

Standard approaches minimize the L2 error between an estimation
q̂πk

(xt, at) =
∑

l≥0 γ
lr(xt+l, at+l) and a parametrized model qθ∑

t

(qθ(xt, at)− q̂πk
(xt, at))

2

In practice one just runs few steps of GD, and the estimators are
likely under-optimized. Further, the same model qθ is used across
policies.

We will follow a different approach.

26



Approximating qπ with
World Models



Approximating qπ using World Models

The operator perspective on qπ offers a direct strategy to define a q̂π

q̂π = (Id− γT̂Pπ)
−1r̂

In other words, we need to approximate (or learn!):

• The one-step update of the environment (a “world model” T̂).
• The immediate reward function r̂.

Note. We have also to ensure that the definition of q̂π makes sense...
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Reproducing Kernel Hilbert Spaces

We will rely on standard machine learning tools: kernel methods.

Reward Function. Let ψ : Ω → G be a feature map of a reproducing
kernel Hilbert space13 (rkhs) G. Then, given n ∈ N points (xi, ai)ni=1,

rn = argmin
g∈G

1

n

n∑
i=1

(
〈g, ψ(x, a)〉G − r(x, a)

)2
+ λ‖g‖2G

where λ > 0 is a regularization parameter.

Notation. We will replace r̂ with rn to highlight the dependency on n.

13Namely, G is a space of functions g(x, a) = 〈g, ψ(x, a)〉
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Learning the Reward Function

Ridge Regression. The quantity rn admits closed-form solution

rn = S∗
nb =

n∑
i=1

biψ(xi, ai) where b = (K + λId)−1y

where

• y ∈ Rn is the vector with entries yi = r(xi, ai),
• K ∈ Rn×n the “kernel matrix” with entries

Kij = k((xi, ai), (xj , aj)) = 〈ψ(xi, ai), ψ(xj , aj)〉G

• Sn : G → Rn such that Sn : g 7→ (g(xi, ai))
n
i=1

Take-home message. We have a “finite” representation of rn that fits
into a machine that we can use in practice!
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Conditional Mean Embeddings

Can we do the same thing for T? Yes, if...

Remark. Let G and F two rkhs over Ω and X with feature maps
ψ : Ω → G and ϕ : X → F respectively.

Then, if the restriction of T to F takes values in G.

(T |F )∗ ψ(x, a) =
∫
ϕ(x′) τ(dx′|x, a) ∀(x, a) ∈ Ω

ψ(x, a) is mapped to the conditional expectation of ψ(x′)!

Def. T|F is known as the conditional mean embedding (CME) of τ .

Idea. If we can sample from τ , we can collect a dataset
(xi, ai, ϕ(x

′
i))

n
i=1 and learn T|F like we did for rn.
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Conditional Mean Embedding

We formulate the learning problem over Hilbert-Schmidt operators,

T̃n = argmin
W∈HS(F,G)

1

n

n∑
i=1

‖W ∗ψ(xi, ai)− ϕ(x′i)‖2F + λ
∥∥W∥∥2

HS

which yields the closed-form solution

T̃n = S∗
n(K + λId)−1Zn

with Zn : F → Rn such that Zn : f 7→ (f(x′i))
n
i=1.

Normalization. We then take Tn = T̃n

‖T̃n‖
to ensure ‖Tn‖ = 1

Take-home message 2. We have a “finite” representation of Tn that
fits into a machine that we can use in practice!
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Going back to qπ - A Kernel Trick

Can we approximate qπ using rn and Tn? Yes!

Theorem14. Let Tn = S∗
nBZn and rn = S∗

nb for some B ∈ Rn×n and
b ∈ Rn, such that ‖Tn‖ ≤ 1. Then

qπ,n = (Id− γTnPπ)
−1rn = S∗

n(Id− γBMπ)
−1b = S∗

nbπ

whereMπ = ZnPπS
∗
n ∈ Rn×n is the matrix with entries

(
Mπ

)
ij
= 〈ϕ(x′i),Pπψ(xj , aj)〉 =

∫
A
〈ψ(x′i, a), ψ(xj , aj)〉 π(da|x′i).

So qπ,n is well-defined AND has a machine-efficient representation!

14some assumptions and conditions apply
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POWR



POWR Algorithm

We have Policy Mirror Descent with Operator World-models for RL.

• Collect a dataset (xi, ai, x′i)ni=1 of sample transitions to learn Tn

(analogously for rn).

• Choose π0, for example π0(·|x) uniform for any x ∈ X .

• For k = 0, . . . ,

- Let qπk,n = (Id− γTnPπk )
−1rn

- Let πk+1 = SoftMax
(
log π0 +

∑k
j=0 qπk,n

)
• Return: πk for any k ∈ N
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POWR
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Convergence



Convergence of POWR - Assumptions

POWR converges under suitable regularity assumptions...

Assumption (Strong Source Condition). There exists 15 ρ ∈ P(Ω) s.t.

‖(T|F )∗C−β
ρ ‖HS < +∞ and ‖C−β

ρ r‖G < +∞,

for some β > 0, where Cρ =
∑

a∈A
∫
X ψ(x, a)⊗ ψ(x, a) ρ(dx, a).

Notes.

• This is a stronger version of the standard assumption used in supervised
learning settings.

• We need it because we will Tn → T and rn → r to be in a stronger norm than
usual.

15We are implicitly asking r ∈ range(Cβ
ρ ) and range(T |F ) ⊆ range(Cβ

ρ ).
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Convergence of POWR

Theorem. Let ρ satisfy the Strong Source Condition. Let the
world-model Tn and reward rn estimators learned from a dataset
(xi, ai, x

′
i)

n
i=1 where (xi, ai) are independently sampled from ρ and

x′i ∼ τ(·|xi, ai) for i = 1, . . . , n.

Then, for any δ ∈ (0, 1), the iterates produced by POWR converge to
the optimal return as

max
π∈Π

J(π)− J(πk) ≤ O

(
1

K
+ δn− β

2+2β

)
with probability not smaller than 1− 4e−δ

• Good news: it converges!
• Bad news: maybe not that fast...
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Proof Sketch

Proof sketch.

• We know already that PMD with approximate qπ,n converges with
rate O(1/k + ε), if ‖qπk,n − qπ‖ ≤ ε uniformly wrt k ∈ N.

• The following Lemma gives us an idea of how to control ε:
Lemma. Assume T|F : F → G. Then

‖qπ,n − qπ‖∞ ≤ O
(
‖rn − r‖∞ + ‖r‖∞‖Tn − T|F‖HS

)
• Bounding bounding ε boils down to controlling the
approximation error of rn and Tn in ‖ · ‖∞ norm. This is a
supervised setting and we can therefore borrow refined results
from the literature16

16for example Fischer and Steinwart. Sobolev norm learning rates for regularized
least-squares algorithms. JMLR 2020.
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Details

I am hiding a lot of details/questions:

• Constants depending on the key quantities of the problem.

• Minimum sample size n required to make everything work.

• How to choose the step size η?

• How to choose ρ?

• …
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POWR in the “Wild”



Experiments

For now, we have tried POWR on very small-scale/toy environments.

Frozen Lake-v1 Taxi-v3

Mountain Car-v0
39



Empirical POWR Sample Efficiency
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Recap

We...

• Set off to tackle sequential decision making problems...

• Saw how the operator-based perspective offered interesting
insights.

• Saw that policy mirror descent converges to the global
maximum provided we can approximate qπ .

• Proposed an estimator for qπ in terms of a “world model” Tn

(and an estimate for the reward rn).

• Showed that by carefully choosing the spaces where to learn Tn

and rn we can guarantee that POWR:
- Is well defined
- Convereges to the global maximum.

• Observed that POWR actually works well in practice.
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Open Questions

• (Scaling up) How well does POWR work on more challenging
environments?

• (Representation) Are there other choices for F ,G that guarantee
POWR iterates to be (G,F)-compatible? Can we learn them?

• (Efficiency) The usual suspects, Nystrom, Random Features, etc.

• (Infinite Actions) Can we adapt POWR to infinite action spaces?

• (Exploration Vs Exploitation) How to choose the distribution ρ
from which we obtain the dataset to train Tn and rn?
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Thanks!
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Reinforcement Learning or Dynamic Programming?

Strictly speaking we talk about

• Dynamic Programming (DP) and Optimal Control if τ is known
• Reinforcement Learning (RL) if τ is unknown

Today, we’ll be somewhere in between...
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Disclaimer

Reinforcement Learning and Dynamic Programming have a relatively
long history, dating back to the late 1950s from the work of
Bellman17, Samuel18 and Howard19.

They are closely related with Optimal Control and both very active
fields, with a plethora of approaches and techniques developed over
the years.

However, I am going to blatantly ignore all of that and give a very
biased and focused talk on a specific and relatively novel
perspective on how to tackle them.
17Bellman, R.Dynamic Programming. Princeton University Press. 1957
18Samuel, A. L. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development. 1959
19Howard, R. A. Dynamic Probabilistic Systems. Wiley. 1960.
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Going back to qπ

Can we approximate qπ using rn and Tn? Yes, if π is
(G,F)-compatible!

Def. A policy π is (G,F)-compatible if (Pπ)|G has range in F .

Theorem. Let Tn = S∗
nBZn and rn = S∗

nb for some B ∈ Rn×n and
b ∈ Rn, such that ‖Tn‖ ≤ 1. For any (G,F)-compatible policy π,

qπ,n = (Id− γTnPπ)
−1rn = S∗

n(Id− γBMπ)
−1b

whereMπ = ZnPπS
∗
n ∈ Rn×n is the matrix with entries(

Mπ

)
ij
= 〈ϕ(x′i),Pπψ(xj , aj)〉 =

∫
A
〈ψ(x′i, a), ψ(xj , aj)〉 π(da|x′i).

So qπ,n is well-defined AND has a machine-efficient representation!
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Does POWR “Work”?

Two main questions:

• Are POWR’s iterates (G,F)-compatible? And why do we care?

• When (if ever) does POWR converge?
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Guarnteeing Compatibility - Factoring F and G

We restrict to the following choice for F and G:

• H be a rkhs with feature map φ : X → H.
• F = H⊗H with ϕ(x) = φ(x)⊗ φ(x),
• G = R|A| ⊗H with20 ψ(x, a) = ea ⊗ φ(x).

Then – recalling that A is a finite set – we have the following,

Proposition. A policy π is (G,F)-compatible if and only if there exist
pa ∈ H such that π(a|·) = 〈pa, φ(·)〉H for and a ∈ A.

It is enough to check that all π(a|·) “belong” to H to guarantee
(F ,G)-compatibility!

20Here, ea is the a-th element of the canonical basis of R|A| (assume an order on A).
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Sobolev Spaces to the Rescue!

Theorem. Let X ⊂ Rd be compact, H =W 2,s(X ) the Sobolev space
with smoothness s > d/2. Let π0(a|·) ∝ eηq0(·,a) for some q0(·, a) ∈ H
for all a ∈ A.

=⇒ all iterates produced by POWR are (F ,G)-compatible.

Proof sketch. The key is to show recursively that

• If πk is (G,F)-compatible, then the approximate qπk,n belong to
H and,

• The SoftMax operator applied to previous qπk,n yields a
(G,F)-compatible policy πk+1
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POWR
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Does POWR “Work”?

Two main questions:

• Are POWR’s iterates (G,F)-compatible? Yes!

• When (if ever) does POWR converge?
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