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From the previous episodes
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The transfer operator T describes the evolution of any scalar
function of the state in a suitable set .

(TH®) =E[ X, ) | X, =x], feF

If # it is large enough, the transfer operator offers a comprehensive
characterization of a (stochastic) dynamical system as a whole.

Provides a global linearization of the dynamics.

I[ts spectral decomposition yield dynamic modes, for interpretability
and control.



Subspace approach

> Idea: approximate T _at least on a subset #Z C L2,
» We choose # to be a Reproducing Kernel Hilbert Space.
> Linearly parametrized functions {(w, ¢p(x)) for some w € #'.

> ¢ X — A is called feature map. # can be finite or infinite dim.
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Two learning problems

1) Assuming somebody gave us a “good” hypothesis space #Z,

learn an estimator G of the restriction Tﬂ| from data.
H

2) When no off-the-shelf # does the job*, learn it as well.

*e.g. when dealing with structured data like graphs, images, or signals.

Problem 2) Problem 1)

Data :
. . Spectral
Trajectory Representation Operator Regression Decomposition

Linear - Nonlinear - Kernel (Kostic et al. 2022, Klus et al. 2020)
VAMPNets - DPNets Forecasting




Cool! How?

Statistical learning to the rescue
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Estimation error
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All norms are the operator norm || - || = || - ||%_>L%



Representation Learning

Kostic, Novelll, Grazzi, Lounicl, and Pontil — ICLR ‘24

ITr = Gllzorz < U=Ps)T +| 1P% T, =Gl |+ IG=G|
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Representation error Estimator bias

Our approach looks for an empirical estimator of the representation error via the
following upper and lower bounds (consequence of the norm change from # to LJ%)

|U=Po)ToPo*Agio(Car) S NU=P3) Ty 17 < NU=P3) TPl ina(C)
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If the population covariance Cg = I upper and lower bounds match,

and the Eckart-Young-Mirsky theorem on Py, T P, provides a way to

minimize the representation error.



Fast forward a couple of lemmas:

The representation error can be minimized by optimizing

PlP] = HCT?CXX

+1 +1

Ci2 I — v | R(Cx) + R(Cy, )|

Where Cy = E,_x |¢(x) ® ¢(x)| and Cy y

t+1

= Eu o x,) [qb(x) X qb(y)], and

R is a regularization term encouraging Cy =~ [
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Where Cy = E,x [¢() ® ¢()] and Cyx, = Eryyexox,,,) [#0) ® ()], and
R is a regularization term encouraging Cy =~ [

» Pp] is afunctional of the feature map through the covariances Cy, Cx x .

» By learning ¢ we learn #Z = span (gb(x) | x € .SZ")

» The pseudo-inverses make &[] it nasty to optimize with gradient descent.
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Enough math, an example: MNIST

We randomly sample images from
the MNIST dataset according to the

rule that X, should be an image of
the digit # (mod 5) forallz € N,

Given an image from the dataset
with label ¢, a model for the
transfer operator T of this system
should then be able to produce an

MNIST-alike image of the next digit
in the cycle.

Seed: 0
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Example: metastable states of Chignolin

The leading eigenfunctions of T capture the
long-term behavior of atomistic dynamics.

A better representation of the data allows a
more accurate physical understanding.

Trained DPNets on a Graph Neural Network

appropriate for the problmem vs. Fixing Z to
be the Gaussian RKHS.

DPNets-relaxed

Model P Transition Enthalpy AH

DPNets | 12.84 17.59ns -1.97 kcal/mol
Nys-PCR | 7.02 5.27 ns -1.76 kcal/mol
Nys-RRR | 2.22 0.89 ns -1.44 kcal/mol

Reference - 40 ns -6.1 kcal/mol

Free Energy Surface




Conclusions

Additional works

> Estimating Koopman operators with sketching to provably learn large-scale
dynamical systems. (NeurIPS’23)

> A randomized algorithm to solve reduced rank operator regression. (Submitted)

> Consistent Long-Term Forecasting of Ergodic Dynamical Systems. (ICML 2024)

> Learning the Infinitesimal Generator of Stochastic Diffusion Processes. (Submitted)
> Operatorial formulation of Reinforcement Learning.

> Neural Conditional Probability models.

And also:

» Riccardo Grazzi
»  Giacomo Turri

» Daniel Ordonez-Apraez
» Prune Inzerilli

» Carlo Ciliberto
» Marco Prattico

» Andreas Maurer
» Lorenzo Rosasco
» Giacomo Meanti
» Antoine Chatalic

Vladimir Kostic Karim Lounici Massi Pontil



Thank you!



Extra Slides



E[R(R*)] — R(R?)

Large Scale Algorithms

Meanti et al. NeurIPS '23 — Turri et al. (submitted)
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estimators: 1-2 orders of
magnitude faster,

same statistical optimality.
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