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From the previous episodes
‣ The transfer operator  describes the evolution of any scalar 

function of the state in a suitable set .
𝖳

ℱ

    (𝖳f )(x) = 𝔼[ f(Xt+1) | Xt = x ], f ∈ ℱ

‣ If  it is large enough, the transfer operator offers a comprehensive 
characterization of a (stochastic) dynamical system as a whole. 

‣ Provides a global linearization of the dynamics. 

‣ Its spectral decomposition yield dynamic modes, for interpretability 
and control.

ℱ



Subspace approach
‣ Idea: approximate  at least on a subset . 

‣ We choose  to be a Reproducing Kernel Hilbert Space. 

‣ Linearly parametrized functions  for some . 

‣  is called feature map.  can be finite or infinite dim.
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Two learning problems

1) Assuming somebody gave us a “good” hypothesis space ,               
learn an estimator  of the restriction from data. 

2) When no off-the-shelf  does the job*, learn it as well.

ℋ
�̂� 𝖳π|ℋ

ℋ
* e.g. when dealing with structured data like graphs, images, or signals.
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Statistical learning to the rescue
Cool! How?
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Our approach looks for an empirical estimator of the representation error via the 
following upper and lower bounds (consequence of the norm change from  to )ℋ L2
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π

If the population covariance  upper and lower bounds match,  

and the Eckart-Young-Mirsky theorem on  provides a way to  

minimize the representation error.

Cℋ = I

Pℋ𝖳πPℋ



Fast forward a couple of lemmas:
The representation error can be minimized by optimizing
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‣   is a functional of the feature map through the covariances . 

‣ By learning  we learn . 

‣ The pseudo-inverses make  it nasty to optimize with gradient descent.

𝒫[ϕ] CXt
, CXtXt+1

ϕ ℋ = span (ϕ(x) |x ∈ 𝒳)
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Enough math, an example: MNIST 

We randomly sample images from 
the MNIST dataset according to the 
rule that  should be an image of 
the digit  (mod 5) for all .  

Given an image from the dataset 
with label , a model for the 

transfer operator  of this system 
should then be able to produce an 
MNIST-alike image of the next digit 

in the cycle.

Xt
t t ∈ ℕ0

c
𝖳



Example: metastable states of Chignolin

The leading eigenfunctions of  capture the 
long-term behavior of atomistic dynamics. 

A better representation of the data allows a 
more accurate physical understanding. 

Trained DPNets on a Graph Neural Network 
appropriate for the problmem vs. Fixing  to 
be the Gaussian RKHS.

𝖳
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Conclusions

Vladimir Kostic Karim Lounici Massi Pontil

And also: 
‣ Riccardo Grazzi 
‣ Giacomo Turri 
‣ Daniel Ordoñez-Apraez 
‣ Prune Inzerilli 
‣ Carlo Ciliberto 
‣ Marco Pratticò 
‣ Andreas Maurer 
‣ Lorenzo Rosasco 
‣ Giacomo Meanti 
‣ Antoine Chatalic

Additional works

‣ Estimating Koopman operators with sketching to provably learn large-scale 
dynamical systems. (NeurIPS’23) 

‣ A randomized algorithm to solve reduced rank operator regression. (Submitted) 

‣ Consistent Long-Term Forecasting of Ergodic Dynamical Systems. (ICML 2024) 

‣ Learning the Infinitesimal Generator of Stochastic Diffusion Processes. (Submitted) 

‣ Operatorial formulation of Reinforcement Learning.  

‣ Neural Conditional Probability models.



Thank you!
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Meanti et al. NeurIPS ’23 — Turri et al. (submitted)
Large Scale Algorithms

Nyström (left) and 
Randomized SVD (bottom) 
estimators: 1-2 orders of 
magnitude faster,          
same statistical optimality.


