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Applications of Reinforcement Learning

• Robotics and Autonomous Systems
• Financial Trading and Portfolio
Optimization

• Energy Management and Smart Grids
• Healthcare and Medical Treatment
Planning

• Game Strategy and Complex
Decision-Making

• Autonomous Vehicles and
Transportation

The 2024 Turing Award was assigned
yesterday to Andrew Barto and Richard
Sutton for developing the conceptual
and algorithmic foundations of
reinforcement learning
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Today’s Plan

• Describe an original, operator-based, formulation of RL,

• Use it to “solve” RL,

• Introduce approximations to make it practicable,

• Formulate an actual algorithm,

• Watch it in action.
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Problem Setting



Intuition

At time t, the environment is in the state Xt. The agent executes an
action At. The environment changes its state to Xt+1.

Time t + 1

EnvironmentAgent
Action

State

Reward

Time t

State

Reward

A scalar reward rt+1 = r(Xt, At) signal tells us how good/bad the
action At was.
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Markov Decision Processes (MDPs)

We consider a Markov Decision Process (MDP) characterized by a:
• State space X
• Action space A
• A (non-negative) reward r : X ×A → R+

• A transition kernel τ : Ω = X ×A → P(X ) — Xt+1 ∼ τ(·|xt, at).

Details: We assume X and A Polish spaces and τ, r Borel measurable.
P(X ) the space of Borel probability measures on X .
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Policy

Setting. We have the freedom to choose what action to take.
This is embodied in the notion of a policy:

π : X → P(A)

so that π(·|x) denotes the probability that we will take a specific
action when the system is in state x ∈ X .

Goal. Find the “best” policy.
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Objective

Given a starting distribution ν ∈ P(X ) and a discount factor1
γ ∈ [0, 1),

Goal: maximize the (γ-discounted) expected return

J(π) = Eν,π,τ

[
+∞∑
t=0

γtr(Xt, At)

]

achieved by policy π in the MDP (X ,A, τ, r) starting from ν .

Notation:
X0 , At and Xt+1 have laws respectively ν , π(·|Xt) and τ(·|Xt, At) for any t ∈ N.

1This could be generalized, but makes for much more manageable problems.
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Expectations & Objectives

Concretely speaking, we aim to design an algorithm that:

• Returns an optimal policy (or a sequence of policies iteratively
converging towards the optimum).

• Ideally while establishing some convergence rates.
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Reinforcement Learning or Dynamic Programming?

Strictly speaking we talk about
• Dynamic Programming if τ is known

• Reinforcement Learning if τ is unknown
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Disclaimer

Reinforcement Learning and Dynamic Programming have a relatively
long history, dating back to the late 1950s from the work of Bellman2,
Samuel3 and Howard4.

They are closely related with Optimal Control and both very active
fields, with a plethora of approaches and techniques developed over
the years.

However, I am going to blatantly ignore all of that and give a very
biased and focused talk on a specific and relatively novel
perspective on how to tackle them.

2Bellman, R.Dynamic Programming. Princeton University Press. 1957
3Samuel, A. L. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development. 1959
4Howard, R. A. Dynamic Probabilistic Systems. Wiley. 1960.
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The Operator Way



Markov Decision Processes as Linear Operators

Markov decision proccesses can be described by linear operators5.
How?

As the process is Markovian, the next state Xt+1 only depends on the
present, and not on the past: Xt+1 ∼ τ(·|xt, at).

Instead of studying the transition probability τ , we can study the
integal operator associated to it:

(Tf)(xt, at) =
∫
X
f(x′) τ(dx′|xt, at) = E [f(Xt+1) | xt, at] .

For any function f of the state, Tf is its expected value in the future
given (xt, at).
T is linear, since T(f + αg) = Tf + αTg.

5An operator is a map from functions to functions.
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Why operators?

• They map the problem of studying non-linear dynamics on X
into the problem of studying linear operators in function spaces.

• They describe expected values in the future, exactly what
appears in the RL objective function.

• They can be approximated from data, with proved statistical
learning guarantees.
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Operatorial Perspective of Reinforcement Learning

Transfer Operator.
T : Bb(X ) → Bb(Ω) such that for any f ∈ Bb(X ) and (x, a) ∈ Ω

(Tf)(x, a) =
∫
X
f(x′) τ(dx′|x, a) = E [f(X ′) | x, a] .

“Policy” Operator.
Pπ : Bb(Ω) → Bb(X ) such that for any g ∈ Bb(Ω) and x ∈ X

(Pπg)(x) =
∫
A
g(x, a) π(da|x) = E [g(X,A) | X = x] .

Notation:
Bb(X ) space of bounded Borel-measurable functionals on X .
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Operatorial Perspective (II)

By applying T and Pπ we have...

Single interaction between π and the MDP starting from (x, a):

E[r(X1, A1)|X0 = x,A0 = a] = (TPπr)(x, a)

After t ∈ N such steps...

E[r(Xt, At)|X0 = x,A0 = a] = (TPπ)tr(x, a)

Summing all of them up (with γ-discount):

qπ(x, a) =
+∞∑
t=0

γtE[r(Xt, At)|x, a] =
+∞∑
t=0

(γTPπ)tr = (Id− γTPπ)−1r(x, a)

Why: T and Pπ are Markov operators, hence their operator norms ‖T‖ = ‖Pπ‖ = 1 and
therefore the above Neumann series is convergent.
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Operatorial Perspective (III)

Proposition.6

J(π) = 〈Pπqπ, ν〉 =
〈
Pπ(Id− γTPπ)−1r, ν

〉

Proof. Recall the definition of our objective

J(π) = Eν,π,τ

[
+∞∑
t=0

γtr(Xt, At)

]

= Eν,π

[
+∞∑
t=0

γtE[r(Xt, At)|X0, A0]

]
= Eν,π [qπ(X0, A0)]

= Eν

[
Eπ(·|X0)[qπ(X0, A0)|X0]

]
= Eν [(Pπqπ)(X0)]

= 〈Pπqπ , ν〉

6With the canonical pairing 〈f, ν〉 =
∫
f(x)ν(dx).
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Maximizing J

Why do we like the operator form for J(π)? Well, for starters,

max
π

〈
Pπ(Id− γTPπ)−1r, ν

〉
is in a much more “standard“ form (from an optimization
perspective).

Actually... since for any θ ∈ [0, 1] and policies π1, π2,

Pθπ1+(1−θ)π2
= θPπ1

+ (1− θ)Pπ2

The definition of policy operator is linear w.r.t. individual policies,
so...

...is the problem concave?

15



Maximizing J

Unfortunately, not7.

However, nothing prevents try and minimize it nevertheless!
In particular, since we can “easily” compute derivatives...

Lemma.8 For any Markov operators P,P′ let M = P′ − P. Then

lim
h→0

J(P+ hM)− J(P)
h

=
1

1− γ

〈
Mq(P), (Id− γTP)−∗ν

〉

Meaning we could use first-order methods to minimize J !

7Agarwal, Kakade, Lee and Mahajan. On the theory of policy gradient methods:
Optimality, approximation, and distribution shift. JMLR 2021.
8We have generalized the definitions of J and q to any Markov operator.
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Policy Mirror Descent



Mirror Descent10

Mirror Descent (MD). Optimizing a linear approximation of our
objective function, while keeping a small Bregman divergence D
between iterates:

For any k ∈ N the update step is

Pk+1 = argmin
P∈Π

−η 〈∇J(Pk),P〉+D(P,Pk)

If J were convex, MD guarantees convergence9!

(Potential) Advantage 1: carefully choosing D might yield more
amenable (e.g. closed-form) solutions for the update step above!

(Potential) Advantage 2: As J depends on T, for which we will only
know an approximation, we will not be “overconfident” in our
updates.
9Under some additional assumption on D and Π
10Technically, ascent, but we can just minimize −J
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“Our” Bregman Divergence

So, let’s choose our Bregman divergence.

Generalizing (Xiao2022)11 from the tabular setting12, we take

D(Pπ,Pπk
) =

1

1− γ

∫
KL(π(·|x), πk(·|x)) ρπk

(dx)

where:
• ρπ = (Id− γTPπ)−∗ν is the “occupancy measure” of π,
• KL is the Kullback-Leibler divergence

11Xiao. On the convergence rates of policy gradient methods. JMLR 2022.
12Tabular setting: X and A are sets with finite cardinality.
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(Policy) Mirror Descent

Proposition. The (Policy) Mirror Descent step can be performed
point-wise, namely the iterative sequence of operators Pk = Pπk

is
such that, for any k ∈ N and any x ∈ X

πk+1(·|x) = argmin
p∈P[A]

−η 〈qπk
(·, x), p〉+ KL(p, πk(·|x))

which has closed-form solution

πk+1(·|x) =
πk(·|x)eηqπk

(x,·)∫
A πk(a|x)e

ηqπk
(x,a) πk(da|x)
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(Policy) Mirror Descent on Finite A

Assumption: in the following, we will assume A to have finite
cardinality.

Then, by applying the PMD update recursively we have

πk+1(·|x) = SoftMax

logπ0(·|x) + η

k∑
j=0

qπj (x, ·)


Where SoftMax(q) = qeq∑

a∈A q(x) .

Note.
While we could generalize the above to generic A, we would be left with an integral at
the denominator that we would (likely) be unable to estimate exactly. Studying how
such approximation error would propagate will be the subject of future work.

20



Covergence of PMD

Theorem13 (Generalization of (Xiao2022)). Let (πk)k∈N be a sequence
generated by PMD with sufficiently large η > 0. Then,

max
π∈Π

J(π)− J(πk) ≤ O(1/k) ∀k ∈ N

Even if J is not convex, PMD converges to the global maximum!

13very informal!
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Towards a practical Algorithm



Taking Stock

Good news. We have an algorithm to find the best policy, but...

Bad news. For every k we need to know how to evaluate qπk
. But

qπk
= (Id− γTPπk

)−1r

requires knowledge of the transition operator T!

Challenges:
• In Reinforcement Learning (RL) we do not know τ (or T)!
• Even in Dynamic Programming, where τ is known, it might be too
complicated for us to obtain T!

Idea: let’s approximate qπk
with some q̂πk

that is more amenable to
practical manipulations!
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Covergence of “Approximate” PMD

Theorem14 (Generalization of (Xiao2022)). Let (πk)k∈N be a sequence
generated by the “approximate” PMD step

πk(·|x) = SoftMax

logπ0(·|x) +
k∑

j=0

q̂πk
(x, ·)


where q̂πk

are such that ‖q̂π̂k
− qπ̂k

‖∞ ≤ εk for some εk > 0. Then,

max
π∈Π

J(π)− J(πk) ≤ O

(
1 +

∑k
j=0 εj

k

)
∀k ∈ N

If we can control the εj (e.g. such that ε = O(1/j)), then
“approximate” PMD converges to the global maximum!

14Again, very informal!
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Approximating qπ with
World Models



Approximating qπ using World Models

The operator perspective on qπ offers a direct strategy to define a q̂π

q̂π = (Id− γT̂Pπ)−1r̂

In other words, we need to approximate (or learn!):
• The one-step update of the environment — a “world model” T̂.

• The immediate reward function r̂.

Note. We have also to ensure that the definition of q̂π makes sense...
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Reproducing Kernel Hilbert Spaces

We will rely on standard machine learning tools: kernel methods.

Reward Function. Let ψ : Ω → G be a feature map of a reproducing
kernel Hilbert space15 (rkhs) G. Then, given n ∈ N points (xi, ai)ni=1,

rn = argmin
g∈G

1

n

n∑
i=1

(
〈g, ψ(xi, ai)〉G − r(xi, ai)

)2
+ λ‖g‖2G

where λ > 0 is a regularization parameter.

Notation. We will replace r̂ with rn to highlight the dependency on n.

15Namely, G is a space of functions g(x, a) = 〈g, ψ(x, a)〉
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Learning the Reward Function

Ridge Regression. The quantity rn admits closed-form solution

rn = S∗
nb =

n∑
i=1

biψ(xi, ai) where b = (K + λId)−1y

where
• y ∈ Rn is the vector with entries yi = r(xi, ai),
• K ∈ Rn×n the “kernel matrix” with entries

Kij = k((xi, ai), (xj , aj)) = 〈ψ(xi, ai), ψ(xj , aj)〉G

• Sn : G → Rn such that Sn : g 7→ (g(xi, ai))
n
i=1

Take-home message. We have a “finite” representation of rn that fits
into a machine that we can use in practice!
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Conditional Mean Embeddings

Can we do the same thing for T? Yes, if we restrict to suitable spaces...
Remark. Let G and F two rkhs over Ω and X with feature maps
ψ : Ω → G and ϕ : X → F respectively.
Then, if the restriction of T to F takes values in G.

(T|F )∗ ψ(x, a) =
∫
ϕ(x′) τ(dx′|x, a) ∀(x, a) ∈ Ω

In other words,ψ(x, a) is mapped to the conditional expectation of
ψ(x′)!

Def. T|F is known as the conditional mean embedding (CME) of τ .

Idea. If we can sample from τ , we can collect a dataset
(xi, ai, ϕ(x

′
i))

n
i=1 and learn T|F like we did for rn.
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Conditional Mean Embedding

We formulate the learning problem over Hilbert-Schmidt operators,

T̃n = argmin
W∈HS(F,G)

1

n

n∑
i=1

‖W ∗ψ(xi, ai)− ϕ(x′i)‖2F + λ
∥∥W∥∥2HS

which yields the closed-form solution

T̃n = S∗
n(K + λId)−1Zn

with Zn : F → Rn such that Zn : f 7→ (f(x′i))
n
i=1.

Normalization. We then take Tn = T̃n
‖T̃n‖

to ensure ‖Tn‖ = 1

Take-home message 2. We have a “finite” representation of Tn that
fits into a machine that we can use in practice!
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POWR



POWR Algorithm

We have Policy Mirror Descent with Operator World-models for RL.
• Collect a dataset (xi, ai, x′i)ni=1 of sample transitions to learn Tn
(analogously for rn).

• Choose π0, for example π0(·|x) uniform for any x ∈ X .

• For k = 0, . . . ,

- Let qπk,n = (Id− γTnPπk )
−1rn

- Let πk+1 = SoftMax
(

logπ0 +
∑k

j=0 qπk,n

)
• Return: πk for any k ∈ N
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POWR
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Experiments

For now, we have tried POWR on very small-scale/toy environments.

Frozen Lake-v1 Taxi-v3

Mountain Car-v0
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Empirical POWR Sample Efficiency
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Recap

We...
• Set off to tackle sequential decision making problems...

• Saw how the operator-based perspective offered interesting
insights.

• Saw that policy mirror descent converges to the global
maximum provided we can approximate qπ .

• Proposed an estimator for qπ in terms of a “world model” Tn
(and an estimate for the reward rn).

• Observed that POWR actually works well in practice.
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Open Questions

• (Scaling up) How well does POWR work on more challenging
environments?

• (Efficiency) The usual suspects, Nystrom, Random Features, etc.

• (Infinite Actions) Can we adapt POWR to infinite action spaces?

• (Exploration Vs Exploitation) How to choose the distribution ρ
from which we obtain the dataset to train Tn and rn?
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Questions?
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EXTRA: Theoretical analysis of POWR



Does POWR “Work”?

Two main questions:

• Are POWR’s iterates (G,F)-compatible? And why do we care?

• When (if ever) does POWR converge?
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Guarnteeing Compatibility - Factoring F and G

We restrict to the following choice for F and G:
• H be a rkhs with feature map φ : X → H.
• F = H⊗H with ϕ(x) = φ(x)⊗ φ(x),
• G = R|A| ⊗H with16 ψ(x, a) = ea ⊗ φ(x).

Then – recalling that A is a finite set – we have the following,
Proposition. A policy π is (G,F)-compatible if and only if there exist
pa ∈ H such that π(a|·) = 〈pa, φ(·)〉H for and a ∈ A.

It is enough to check that all π(a|·) “belong” to H to guarantee
(F ,G)-compatibility!

16Here, ea is the a-th element of the canonical basis of R|A| (assume an order on A).
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Sobolev Spaces to the Rescue!

Theorem. Let X ⊂ Rd be compact, H =W 2,s(X ) the Sobolev space
with smoothness s > d/2. Let π0(a|·) ∝ eηq0(·,a) for some q0(·, a) ∈ H
for all a ∈ A.
=⇒ all iterates produced by POWR are (F ,G)-compatible.

Proof sketch. The key is to show recursively that
• If πk is (G,F)-compatible, then the approximate qπk,n belong to

H and,
• The SoftMax operator applied to previous qπk,n yields a

(G,F)-compatible policy πk+1
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Does POWR “Work”?

Two main questions:

• Are POWR’s iterates (G,F)-compatible? Yes!

• When (if ever) does POWR converge?
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Convergence of POWR - Assumptions

POWR converges under suitable regularity assumptions...
Assumption (Strong Source Condition). There exists 17 ρ ∈ P(Ω) s.t.

‖(T|F )∗C−β
ρ ‖HS < +∞ and ‖C−β

ρ r‖G < +∞,

for some β > 0, where Cρ =
∑

a∈A
∫
X ψ(x, a)⊗ ψ(x, a) ρ(dx, a).

Notes.
• This is a stronger version of the standard assumption used in supervised
learning settings.

• We need it because we will Tn → T and rn → r to be in a stronger norm than
usual.

17We are implicitly asking r ∈ range(Cβ
ρ ) and range(T |F ) ⊆ range(Cβ

ρ ).
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Convergence of POWR

Theorem. Let ρ satisfy the Strong Source Condition. Let the
world-model Tn and reward rn estimators learned from a dataset
(xi, ai, x

′
i)

n
i=1 where (xi, ai) are independently sampled from ρ and

x′i ∼ τ(·|xi, ai) for i = 1, . . . , n.
Then, for any δ ∈ (0, 1), the iterates produced by POWR converge to
the optimal return as

max
π∈Π

J(π)− J(πk) ≤ O

(
1

K
+ δn− β

2+2β

)
with probability not smaller than 1− 4e−δ

• Good news: it converges!
• Bad news: maybe not that fast...
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Proof Sketch

Proof sketch.
• We know already that PMD with approximate qπ,n converges with
rate O(1/k + ε), if ‖qπk,n − qπ‖ ≤ ε uniformly wrt k ∈ N.

• The following Lemma gives us an idea of how to control ε:
Lemma. Assume T|F : F → G. Then

‖qπ,n − qπ‖∞ ≤ O
(
‖rn − r‖∞ + ‖r‖∞‖Tn − T|F‖HS

)
• Bounding bounding ε boils down to controlling the
approximation error of rn and Tn in ‖ · ‖∞ norm. This is a
supervised setting and we can therefore borrow refined results
from the literature18

18for example Fischer and Steinwart. Sobolev norm learning rates for regularized
least-squares algorithms. JMLR 2020.
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Details

I am hiding a lot of details/questions:
• Constants depending on the key quantities of the problem.

• Minimum sample size n required to make everything work.

• How to choose the step size η?

• How to choose ρ?

• …
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